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NOMENCLATURE

a speed of sound

ao  stagnation speed of sound

clc 2...c9  coordinate transformation coefficients defined lrt Eqs. (4) - (12)
and also Eqs. (33) - (37)

D Odeterminant of Jacobian transformation matrix defined in Eqs._ (28) and (42)

e ,eye unit vectors in xy and z directionsSx y

h, h 2-..h coefficients defined in Eqs. (16) - (24)

H artificial viscosities at supersonic points defined in Eqs. (50),
(53) and (55)

HS  artificial viscosities at shock points defined in Eqs. (52) and
: (54)

step function of

M local Mach number

Mshock Mach number just upstream of the shock

M. freestream Mach number

r unit normal to the shock surface

p local flow pressure

PM partially conservative parameter defined in Eqs. (52) and (54)

Pt total pressure

,P p P second-order transformation derivatives defined in Eqs. (25) -
Y Z (27) and (43) - (44)

q magnitude of velocity

s entropy

5 coordinate in streamwise direction

um freestream velocity

F'

u,v,w velocity components in xy, and z directions defined in Eqs. (29)
- (31) and (40) - (41)

U,V,W velocity components defined in Eqs. (12) (15) and (38) (39)

v velocity vector
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vW mean wake velocity

X.yIz coordinates in physical space

X,Y,Z coordinates In computational space

angle of attack

0 total velocity potential function

u switch function defined in Eq. (51)

p local flow density

Pt total density

Tmaterial coordinate defined in Eq. (65)

y ratio of specific ht,:s

r circulation distribution of the wi-ng

vorticity vector

function defining the location of tra. ing vortex sheet

Dirac data function
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ABSTRACT

The development of two- and three-dimensional Euler correction methods based

on the Clebsch transformation is described. In these methods, the velocity

field is decomposed into irrotational and rotational parts. A multigrid full-

potential method based on both the finite-difference and finite-vclume formu-

lations is modified to solve for the irrotational part, while the momentum

equation is applied to solve for the rotational part. Two approaches are

developed to solve for the rotational field. The approximate Euler-Clebsch

approach assumes the entropy is convected along mesh lines, while the exact

Euler-Clebsch approach solves for the convection of entropy along streamlines.

The two approaches agree well in the airfoil application. Only the approximate

Euler-Clebsch approach is employed in the three-dimensional calculations. A

stud, of finite-difference and finite-volume formulations of the full-potential

equation is also included. Euler-correction solutions are presented for vari-

ous airfoils, wings and an F-14 winG/body and are compared with results of the

full-potential and the time-marching Euler methods.

1.0 INTRODUCTION

inviscid flow generally can be described by the Euler equations. However, the

use of the Euler equations requires the flow density, velocity and energy to

be solved as unknown functions. Transonic flows with relatively weak s :cks

can be assumed to be isent :pic and approximated oy potential flow methods

where the potential function is solved as the only unknown function, thus

requiring much less computation than the Euler methocs. In the past fifteen

years transonic computational methods for solving for the potential flow-

fields have been well developed, extensively validated, and widely accepted as

a routine tool for aerodynamic design. Methods for solving the Euler equations

were introduced at a later stage, and significant progress has been achieved

in this area recently. However, because of the much greater memory and compu-

tational time requirements of the Euler methods, and also their less complete

validation [I-2], the full-potential methods are still preferred in the routine

transonic aerodynamic design.

Although the existing full-potential methods are limited to problems dealing

with relatively weak shocks, they are ideal for s~mulating transonic flowfields

0043h 1



at cruise conditions. The solution accuracy of the full-potential method

deteriorates as the flow condition approaches stall where the shocks become

much stronger. To further improve existing full-potential methods, and extend

their applications to stronger shock cases, the effects of the total pressure

loss across shocks and the vorticities generated downstream of the shocks on

the solutions have to be studied carefully. This can be accomplished by the

so-called Euler correction methods that are derived from the basic full-

potential methods by add- Ing additional terms to model the nonisentropic

effects.

This report describes several improvements of the existing transonic full-

potential method, including the development of an Euler correction method

using the Clebsch transformation. Both finite-difference and finite-volume

foDrmulations are used to solve the full-potential equation for the irrotational

part of the flowfield. The finite-difference formulation is based on a gen-

eralized coordinate transformation [3,4), while the finite-volume formulation

is based on mass flux balance [5]. General nonconservative, partially con-

servative and fully conse-vative artificial viscosities and shock-point oper-

ators, as described in Ref. 3, are applied to reflect the directional bias of

local supersonic flows. The rotational part of the flowfield is determied from

the momentum equation.

brief ove-view o; Euler correctton methocs is given in Section 2.0. The

finite-difference and finite-volume formulations of the full-potentlal eqLa-

tion are described in Section 3.0. The Clebsch formulation of the rolatIonal

velocity components is described in Section 4.0. The numeical procedure and

results for two-- and three-dimensional flows are described in Sections 5.0 and

6.0, respectively. Concluding remarks are given in Section 7.0.

0043h 2



2.0 OVERVIEW

The Euler correction methods which produce Euler-like solutions can be classi-

fied into three categories according to their degree of approximation. The

first simply accounts for the total pressure and density losses across the

shocks. The total pressure is computed downstream of the shock and remains

constant along streamlines. Because of a total density jump across the shock,

the governing equation at shock points is significantly modified, while the

governing equation downstream of the shock point is slightly modified due to

the variation of total density between streamlines. The total pressure down-

stream of the shock is computed according to the RankIne-Hugoniot shock rela-

tion, and no additional equation is needed for its solution. Because the vor-

ticity downstream of shocks has only third-order effects on the solutions in

the transonic region, this approach generally predicts shocks agree'ng well

with Euler solutions than either full conservative or nonconservative schemes.

Several investigators have developed schemes in this category, including Hafez

and Lovell [63, and Kloofer and Nixon [7]. The partially conservative schemes

developed by Lock [8] and Chen (9] are also included in this category, tecause

the addition of a mass source at shock points in the partially conservative

schemes is similar to the correction of total density downstream of the shock.

In addition, the total pressure loss downs-ream of the shock can significantly

affect the Kutta condlticn. For examrple, Chen, C~ark and Vassberg [10] showed

that by imposing the nonisentropic Kutta condition, the con-uted shocks agree

fairly well with the Euler solutions, even for strong shock cases.

The second kind of Euler correction method decomposes the velocity vector into

potential and rotational components. The rotational component is explicitly

related to the vorticity field downstream of the shock. There are different

ways to decompose the velocity vector. Brown, Brecnt and Walsh [11] simply

ad a scalar function to the streamwse velocity component. Sokhey (12] and

hafez and Lovell (6) apply Helmholtz theory to decompose the velocity vector

into irrotational and the rotational components such that the stream function

can be used to compute t~e vorticity. Ecer and Akay (13,14] apply the Clebsch

transformation to define the rotational velocity component in conjunction with

the use of a finite-element method. This kind of Euler correction method is

more general than the first method and additional governing equations are

0043h 3
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applied to solve for the rotational velocity components. The additional equa-

tions for the rotational part which govern the convection of the vorticity are

hyperbolic, and require a relatively small amount of computational time to

solve.

The third kind of Euler correction method, proposed by T.C. Tal [15], is a

hybrid method which combines a finite-difference relaxation method with the

method of integral relations. The Euler equations in integral form are solved

downstream of the shock. Both the shock location and circulation are continu-

ously updated during the iterations until the far downstream and the Kutta

condition are satisfied. Most of the works cited above are for two-dimensional

analysis, except the works of Ecer [14).

The present method applies the Clebsch transformation as the method of Ecer and

Akay, except that It; the present method the finlte-difference/flnite-volume

fulr-potential method is applied to solve for the irrotational part and also

that different Clebsch variables are chosen. Both the :wo- and three-

dimensional full-potential methods are well developed, and the extension of

these methods to include the rotational velocity components is straightforward.

Furthermore, the mu'tigrld scheme developed for the full-potential methods

works equally wel' In the present method despite the additional equations for

rotational velocity compon2nts.

A ;rellmlnary description of the present me nod and results is given in Ref.

16. Both the two- and three-dimensional methods are described in more detail

in the following sections. Solutions are presented for various airfoils, wings

and wing/bodies, including an F-14 wing/body, and comparisons are made with

botn the full potential and time marching Euler solutions when available.
0
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3.0 FINITE-VOLUME VERSU5 FINITE-DIFFERENCE FORMULATION

Both the finite-difference formulation of Chen [3,4] and the finite-volume

formulation of Jameson and Caughey (5] are used in the present method to solve

the full-potentlal equation for the irrotational part of the flowfield. In

the finite-difference formulation, the full-potential equation written in gen-

eral coordinates Is employed; since a quadratic coordinate transformation is

applied, the odd- and even-point solutions are naturally coupled together. In

the finite volume formulation, the density term is explicitly computed from

the potential function distribution, and fluxes through cell surfaces are con-

served. However, coupling terms are needed to add to the finite volume formu-

latlon to avoid the decoupling of odd- and even-point solutions. The finite-

difference formulation is described in Section 3.1, the finite-volume formula-

tion in Section 3.2, and artificial viscosities and shock-point operators are

descrIDed in Section 3.3.

3.1 tinite-Difference Method

The full-potentlal equation can be expressed as

(2 2 +a2 v2)  (2 2
(a - u 2 a - yyv )1 ( - w )0zz - 2uvx - 2vwyz - 2uw xz= 0 (1)

where u, Y, w are the x, y, z components of the flow velocity, respectively,

and a is the Iocal speed of sound determined from the energy equation

2 2 -l + v2 2
a = a - 2 (u v + w) (2)

where y is the ratio of specific heats for the assumed calorically perfect

gas an a is the stagnatlon speed of sound.
0

After performing the matrix inversion, multiplication, and algebraic manipula-
p

tIon, a transformed full-potential equation multiplied by the determinant of

the Jacoblan transformation matrix, 0, in general curvilinear coordinates can

be derived as (3,4j

C1 X + C2¢yy + C3 z 0 c4 y + C5(yz + c6*x c7* c8 Y + co z =0 (3)

where
22 2+2

c (a 2 (h1 2 h2 +h) - U 2]/D (4)

0043h 5
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22 2 2 2
c 2 . [a (h4 , h5 + h6 ) V ]/O (5)

c 3  7 [a (h9 h(

c4  [2a 2(hh 4 + h2h5 * h3h6) 2UV]/D (7)

2
c 5  [2a (h4 7 + h5h8  h6h9 ) - 2VW]/D (8)

c 6  [2a 2(hlh 7 + h2h8 + h3h9) - 2UW]/D (9)

c7  - (h ipx + h2p Y + h 3p z)/D (10)

c 8  - (h4p x h5p Y Y h6P ,.D ('1)

c 9  7(hTP n 9hz (12)

U, V. W are velocity components defined as

U h 1lu + h 32 h3w

V =h u + h v + hw (14)
4 . 6

W hu + h v + h w (15)
8 9

Coeff'clents hl ... hg are transformation derivatives aefined as

y - yZZy (16)

h2 = 1 y 2

h3 =Xyyz  xZY  (18)

h y4 yZ - yxzz (19)

z x Zh5 ZzX - ZXz (20)

h6 = x y - xXY z  (21)

h x7  xzy yyZ X  (22)

h Z X - ZyX X  (23)

h9  = Zxy Y  .. - X (24)

0043h 6



and coefficients pX§ PYI. andp are second-order transformation

derivatives defined as

XaC IX XX+ 4C 2X x 4.+C 3X zz 4C 4 XY + 4C 5x Z + cxXZ (25)

uy.C lyXX C 2y,~ Y+c 3yzz + C 4yX + C 5yYZ + C6y~z (26)

pZ c 1 zXX +C2 YY 3 zZZ+C 4 zXY +C5 zYZ + 6 XZ (27)

The determinant of the Jacobian transformation matrix is defined as

D -h 1x + h 4x + h 7x z(28)

The velocity components u, v, w are defined as

u = (h~ 1 0 + h4 4 o h 7(Z )/0 (29)

v - (h 2 (o + h 5 y 4. h Oz /D (30)

*w - ( h3 (0 + 4. h gOZ,/D (31)

A second-order local coordinate transformation which transforms a 27-point cell

from the physical space to the computational space (Fig. 1) can be applied to~

-' formulate a second-order finite-difference approximation to Eq. (3) as des-

cribed 'n Ref. 3.

(a) Physical space (b) Computationlal space

z

/T

Figure 1. Transformation of a second-order element.
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Equation (3) can be reduced to a two-dimensional equation:

CCyXX + C2 yy + C4 xY + c74 X + C8 (Y  0, (32)

iwith cI, 2 # c, c,7@ and c8 redefined as

2 2 2 2 2
cI - [a (xy + yy) 2U (33)

2 2 2 22
c2 - [a (xX +yX )  V )/O (34)

cx2 = -2[a(XxXy + yXyy) - UV]/D 2  (35)

c 7 = (x py - yypx)/D (36)

c = (yX x - xpy)/D (37)

and U, V, u, v, D, PX, and py redefined as

U = Uyy - VXy (38)

V = uyx - vx (39)

u = (y ,, - Y)/D (40)

v = (x x Y - x Y / D A41)

= XY Y - Xyy X  (.2)

Ix =C' Xx + C 2X + C 3 X y (43)

py C lYxx + C2Yyy + c3YXY (44)

Equatlon (32) Is consistent with the two-dimensional equation derived In Ref.

17. The detail of the finite-difference approximation to Eqs. (3) and (32)

can be found in Refs. 3 and 4.

3.2 Finite-Volume Method

The finite-volume method of Jameson and Caughey [5] applies the mass flux con-

servation principle to formulate the finite-difference approximation to the

full-potential equation. As shown in Fig. 2 for a two-dimensional case, four

primary cells, 1298, 2349, 9456 and 8967, surrounding the control point 9 are

0043h 8
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S81 g _/
.55

D A

Figure 2. Primary and secondary cells in the fliite-volime scheme.

first used to evaluate the flow properties Including the velocity components.

Then the conservation of mass flux is applied along the four cell boundaries

of the secondary cell ABCO wh'ch is formed by the centers of the pr'mary cells.

The evaluation of the mass flux on these four secondary cell surfaces intro-

duces a "lumping" error in the finite-difference approximation of the 'ill-

potential equation at the control point 9. In addition, the fInlte-difference

Dproximatlon thus constructe results in uncoupling of even- and oa-::'nt

sclutions. The remedy to this problem is to add proper coupling termi, which

essentially shifts the evaluation of mass fluxes from the centers of four pri-

mary cells to the control point 9. As derived in eqs. (:3) ard (34), ',e

coefficients c, and c2 are the leading terms of second derivatives of the

po-ential function in the X and Y drec- tions, respectively. The follol"4ng

coupling term w'th a cross derivative

A1 2 2 2 U2

A (a 2(x 2 + y) 2. U 2 *~ (45)
AX = a(Y YY ]XY (5

compensates for the lumping error in computing the flux balance in the X-direc-

tion. Similarly the following coupling term with a cross derivative

A 1 2 2 2 V2  (46)Ay 2 a( X  X y ) - ]XY (6

compensates for the lumping error in computing the flux balance in the

Y-direction. Similar coupling terms can be constructed for three-dimensional

cases.

0043h 9
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With these coupling terms, the finite-difference approximation of the finite-

volume method is very similar to that of the finite-difference method des-

cribed in Section 3.1 The approximation of the coupling terms in the finite-

volume method Is identical to the exact coupling term In the finite-difference

method only if the mesh lines are perpendicular to each other. However, since

the leading terms of the second derivatives of the two methodA are identical,

the relaxation scheme can be commonly constructed and shared by both methods

while allowing different ways of computing the residuals. In the method of

Jameson and Caughey [5), the coupling terms are constructed in divergence form.

Therefore, their scheme is fully conservative. Although the finlte-difference
method has an exact coupling of even- and odd-point solutions, the method is

rot fully conservative.

Both the finlte-difference and the finite-volume methods are implemented in

the Present study. A comparison of the solutions obtained by the two methods

is given in Section 6.1.

3.3 Artificial Viscosities and Shock-Point Operators

The second derivative of the potential function in the st ear'wise direction,

S, is given as
2

a_ 2x 2¢y 2¢ U~y+2~,+2Wx ) 17
SS 2 (u x + v 2 0 + ?uvo + 2vw + 2uwq (47)

SS q2 X yy INxy xzq

Equation (47) can be rewritten as

OSS (U2 xX + V2 YY + W + 2 UVOxy 2VOYZ 2UWvX) (48)

where U, V, W are given In Eqs. (13) through (15).

The directional bias of supersonic flows ca be properly simulated by perform-

ing an upwind differencing or adding artificial viscosities in the approximate

;treamwise direction. If Y = constant lines are in the approximate s direc-

tion, the principal part of it can be approximated by
U2

S - 0 (49)

q

A first-order artificial viscosity can be expressed by
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H A )x WU_$_2 U2$X
0 0 "- 1 - -0 "- ) 1 ( 5 0 )

where

2

max 12' 0) (51)
* q

H is then added to the finite-difference representation of Eq. (3) at super-

sonic points. At shock points. i.e., the first downstream subsonic points

after the shocks, the following first-order artificial viscosity H is adbedL S

with p controlling the nonconservative differencing:
m

H= (p-x,(2
Hs (Pm l)( D'-(52)

If PM  0, the quantity UU2 xx is conserved along Y * constant lines, imply'ing

that the added artificial viscosities are conserved along approximate stream-

lines. If pm > 0, a numerical mass flux Is introduced at shocks, modifyrg

t:;,e locations and strengths of the shocks. The effect of p on the captunvd

shocks will be discussed later. A second-order artificial viscosity and nock-

point operator can be expressed as

1 2 0 2 *1 2 . 2
2 iU U2®xx uU2x _U__XXH :'AX) [- X - - - 2 -- - l o - ) (53)

(AX)uUU2 $U2 MU2 $X

HS = (p 1) [ X )i-l - )i-2](Pm -54)

The solution Is second-order accurate at both subsonic and supersonic poivts,

and first-order accurate at shock points. Although j is a rampfunction, bMxth

H and H reduce to zero as the mesh size goes to zero. In the so-called
s

quasi-conservative schemes, the finite-difference formulation, described ft

Section 3.1, is applied, and only the differencing of artificial viscosities

is in divergence form; the differencing of the governing potential equatitm is

not. A second-order fully conservative scheme also can be constructed by
Incorporating H and H Into the finite-volume formulation described in Set-

s
tion 3.2.

0043h 11



Similarly, a nonconservative scheme can be developed by adding the following

artificial viscosity at supelsonic points

H = (0) [(OXX)i-l - (XX)j ]  (55)

4 to make the differencing upwind as in the original Murman and Cole scheme [18],

while no artificial viscosity is added at the shock point.

4

0

iII
V

I0
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4.0 CLEBSCH TRANSFORMATION

The Clebsch transformation has been extensively employed in the calculation of

three-dimensional rotational flows in turbomachines up to the subcritiLcal flow

range using mostly analytical approaches. The method has 'ten successfully

developed for computing shear flows (19,20]. wake flows (21,22,23], and non-

axisymmetric inlet flows (24).

In the Clebsch formulation of steady rotational flows, the velocity vector V is

decomposed into a potential part and rotational parts, written in terms of

scalar functions £19]:

2t + A anVkn (56)

Hence, by definition, the vorticity !ector Q is nonzero:

E VxV - I Vn X YX (57)- ~ n n n

To determine the flowfield, the Clebsch variables *, a and X must be chosen
n n

so that the equations of motion are satisfied. In general, each pair of a and
n

k can be conside-ed to represent the vorticity field generated by varlo.is
n

sh.ocks or the trailing vorticity downstream of lifting bodies such as wings or

propeller blades.

For steady flow,

while tie momentum equation, written In Lamb's form for isoenergetic flow in

t:.e absence of body f3rces, is

2
V x 9 7 _ s (59)

where p is the density, s the entropy, a the speed of sound, and y the

ratio of the specific heats of the flow.

rIn the present approach, the potential part in Eq. (56) is determined by solv-

Ing the full-potential equation given in the previous section, while the rota-

tional parts in Eq. (56) are chosen to satisfy the momentum equation, Eq. (59).

The entire flowfield can then be computed by solving the governing coupled

equations of these Clebsch variables iteratively.

0043h 13
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When shocts appear in the flowfield, entropy increases across the shocks. The

rotational parts of the velocity vector defined in Eq. (56) are determined

from the momentum equation. A general solution to Eq. (59) is given by:

Q . H +Q p(60)

Here 9 is the homogeneous solution of Eq. (59), namely:

x " 0 (61)

and Q is the particular solution of Eq. (59), namely:-p

vxQ Vs (62)

The particular solution 9 represents the vorticity component which is not

parallel to the velocity vecto-.

Following arguments similar to those in Refs. 19 to 24, the vorticity compon-

ent associated with the entropy jump across shocks can be expressed as:

Q = VT x VS (63;-p

where s is the entropy field and T is a Clebsch variable. Substituting Eq.

(62) into Eq. (61), and considering that entropy is convected along stream-

lines behind shocs,

V * Vs = 0 (54)

it can be shown that the govetning e~uation for i is

2
V 9 a (Er)

The Clebsch variable T is similar to the Darwln-Lighthill-Hawthorne drift

function [19]. The variation of T From streamline to streamline is directly

connected to the stretching and tipping of the vortex filaments associated

with the entropy variation in the flowfield.,

The homogeneous solution represents the vorticity component which is parallel
to the velocityvector. For the problem considered here, QH is the trailing

vorticity shed behind a wing. In the airfoil case, .2 is identically zero.

It can be shown that the homogeneous solution is

RH 6( )Vt x vr (66)

0043h 14
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where E y - f(x,Z) - 0 defines the wake surface or the location of the

trailing vortex sheet, 6( ) is the Dirac delta function, and r is the

circulation of the vortex filaments shed by the wing. Note that according to

Eq. (66), the trailing vorticity lies in the wake surface and is zero every-

where except on the wake surface. Substituting Eq. (66) into Eq. (61), along

with the use of the wake boundary condition, namely:

V * - 2 0 (67)

the condition for zero pressure jump across the wake, including the trailing

edge, is obtained

v vr - 0 (68)
-w

Here V is the mean velocity between the wake upper and il'er sirds.

Given the velocity field frum the previous iteration step, the Clebsch vari-

ables s, T, , and r can be updated by solvIng Eqs. (64). (65), (67) and

(68), respectively.

As mentioned earlier, the full-potential equation is employed to 4etermine the

potent'jl part of the velocity vector. Using the results derived In Section

2.1, the velocity vector can be written as:

V = 7( - sVy + H(t3r (69)

where H(Z) is the step function. Substituting Eq. (69) into Eq. (58) lields

v {p[V - sVT + H( )vr]} 0 (0)

Given the rotational parts from the previous iteration step, the potential

part can be updated by solving Eq. (70) in tPe following form:

V • {pVo} = - V - {o(-sVr + H( )vr)) (71)

The density p can e related to the local flow properties by means of the

isentropic relation and the energy equation:

p a e (M2 2) 1/(Y) (72)

and
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a 2  1 (+ - q2) (73)
M2 2

where q Is the magnitude of the velocity vector, and M. is the freestream

Mach number.
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5.0 NUMERICAL PROCEDURE AND RESULTS FOR TWO-DIMENSIONAL FLOWS

The governing equations and boundary condition, the numerical procedures to

solve them and the results for two-dimensional flows are presented in this

section.

5.1 Governing Equations

The finite-difference and finite-volume methods can now be modified to include

the effects of the total pressure loss across shocks and the vorticity down-

stream of shocks. For flow around an airfoil, there is no trailing wake down-

stream of the trailing edge. From Eqs. (40), (41) and (69), and applying the

same coordinate transformation as in Section 2.0, the velocity components can

)e expressed as

u - X Y) - S(YyTx - YX Y)]!D

(74)

v - ((xxoY - xy x) - s(xXTY - xy x)]/0

and the governing equations can be expressed as

ClOXX * C20yy + C4 OxY + C7(X + C 8 Y - Da 2V(pVT)/p (75)

with the following two equations for solving the Clebsch variables s and 7:

USX + Vsy 0 (76)
2

UT + Vyr Da (77)X Y

A multigrid line-relaxation scheme, originally developed for transonic full-

potential methods (24-28] is applied to solve Eq. (75) for the potential

function #, along with the new expression, Eq. (74), to compute the velocity

components. The Clebsch variables can be solved analytically under certain

approximations, or numerically by using the Lax-Wendroff scheme (29].

5.2 Avproximate Euler Clebsch Approach

The flowfield around an airfoil can be divided into irrotational and rotational

regions as shown In Fig. 3. The flowfield downstream of the shock is rota-

tional. Across a shock, there is an entropy jump which cwn be estimated from

the Ranklne-Hugoniot shock relation if the Mach number upstream of the shock

is known. The entropy s is then convected downstream along the streamlines as
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IRROTATIONAL REGION -.

ROTATIONAL REGION

Figure 3. Irrotational and rotational flowfield about an airfoil.

described in Eq. (76). In the present method, a C-.nesh which conforms to ':,e

airfoil surface is applied. Therefore, It is a fairly good approximation that

the entropy is constant along the mesh lines Y = constant downstream of the

shock.

A second approximation can be made in order to solve for the Clebsch variable

i analytically. As described in Section 4.0, T represents a material

coordinate s.-face which stretches according to the local flow vElocity, as

described in Eq. (77). If the velocity is assumed to be freestream ve')city,

and the speed of sound is also assumed to be freestream value, Eq. (77) car be
-ewriten as

(cc s ) + (sine ) i -- 1 (7 8 )

where a is the angle of attack.

In order to solve Eq. (78), boundary conditfons need to be prescribed for T

at the shock front. Since the potential function o is taken to be continu-

ous across the shock, the conservation of tangential momentum across the shock

front requires T to be a constant everywhere on the shock surface. However,

since the CleDsch variable i itself is not used in the present formulation

to compute the velocity, but rather its gradient, the boundary condition is

enforced by requiring that the jump in the velocity vector across the shock is

normal to the shock surface. Since all the jump in the velocity across the

0043h 18
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shock is contained in the rotational part, this condition is satisfied by the

following:

V1 x n 0 (79)

where n E (n )e + (n )e defines the local shock surface unit normal. Solv-

ing Eqs. (78) and (79) simultaneously for the gradient of r gives, in the

two-dimensional case,

V Tn 
(80)

yM (nx coso + ny sina)

Hence, in the 2-D Euler correction method, the velocity vector reduces to

S
2 n (1)

yf (n coso + n sIna)
mx y

Since VT is constant along Y = constant lines, the source term on the right-

har- side of Eq. (75) is small everywhere except at shock points where dis-

.. continuities in s and p exist.

To obtain the flowfield, the following iterative procedure is employed:

1. Set the initial solut!on for * to be the freestream conditlon, and set

s and T to be zero.

2 Solve Eq.. (75) for 0 using the multigrid relaxation met~oo.

3. Obtain the shock surface normal vector and the entropy Jump across the

shocks from the Rankine-Hugoniot relation when supersonic pockets (or

shocks) start to appear In the flowfield.

4. Update the rotational part in Eq. (81).

5. Repeat Steps 2 to S until solutions converge.

5.3 Exact Euler-Clebsch Approach

The governing equations for s and T, Eqs. (76) and (77), are of hyperbolic

type. They can be solved using the second-order Lax-Wendroff explicit scheme.

0043h ... .. 19
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Consider the following general equation:

U F+V La G (8?)ax ay
(822

where F - (s,T) and G - (0, a 2/y).

The solution procedure to solve the above equation consists of prescribing the

initial condition for F at the shock front, and solving Eq. (82) by marching

downstream in the X direction. During space marching, the solution of F at

the I station is given, and the solution at the (i + 1) station is computed in

two steps (29).

Step 1
"S

4, V G1+112 1 1 1 1 1 1 l 1

FJ+1/2 F F) - U (FJ+l - Fj + U (93)

Fit+l/, 1 (F + Fl - i 2 - F1_ + i (84)

.,J-1/2 2 j j- 2 i 2 i-i 2 U2

Step 2

il = 1 1 Vl V2 '+1/2 1-1/2 G G2
FU - 2  ( +I/ 2  J-1 1 2)  (U u2

The subscripts 1 and 2 denote the cell-centered values of the cells daf~ned In

Fig. 4. In this scheme, the Von Neumann stability requ' es

V <<
Ua:,,U

In the flowfield where the scheme applies, the surface normal velocity compon-

ent Is usually small compared with the streamwise component.

The coupling between the potential and rotational solution procedures is sim-

ilar to the one described in Section 5.1, except in Step 4 where the numerical

solutions are computed for s and T instead of using the analytical solutions.

5.4 Kutta Condition

The Kutta condition requires that the static pressures at the upper and lower

trailing edges be matched. Furthermore, it also requires that there is no

pressure jump across the streamline emanating from the trailing edge. In the

0043h 20
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Figure 4. Lax-Wendroff scheme.

full-potential method, flow is assumed Lo be isentropic everywhere. Therefore

the Kutta condition can be satisfied by assuming the potential jump across the

trailing edge is constant along the streamline, or the mesh line, emanating

from the trailing edge. This ensures that the magnitudes of the velocities on

both sides of the streamline are equal, as are tne pressures on both sides of

the streamline. In the present method if shocks appear on either upper or

lower or both surfaces, the total pressures of the streamlines just above and

below the trailing edge are different. Hence, in order to have ecual pressure

across the dividing streamline, the velocity must be discontinuous across it.

In this section the velocity discontinuity across this dividing streamline will

be shown to come from the rotational term sVT so that the condition for *
across this dividing streamline is the same as in the full-potential method.

P

To simplify the derivation, consider the case where there is only one shock on

the airfoil upper surface. The static pressure can be written in terms of

local velocity and-stagnation pressure:
y/y-l

P, a tl) [1 + y- I M2 ( q 2](87)

Pt2 2

1 2 2 Py- I

P2 - + 2 M. (I - 2)) (88)
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Equating Eqs. (87) and (88)

(- / *M(1-1 2 * - 2 ) qq
t2 Y2 2 2

1+-J 2 2
- M Aq ] (89)
2

where 8q 2 q2 - ql" Neglecting the term Aq in Eq. (89), an explicit expres-

sion for the velocity jump across the dividing streamline can be found.

=L_ [l - !t2 + -I M2 (1 - q2)] (90)
q- YM2  Ptl 2

In practice, the stagnation pressure loss across the shock is ge)eral y small

even for a strong shock. For example, a shock Mach number of 1.7 results in

15% loss in stagnation pressure. Since Aq is proportional to the stagnation
2

pressure loss, the assumption that the Aq term can be neglected in dcriv-

Ing Eq. (90) is valid.

From Eq. (69), the velocity jump across the dividing streamline is given by

U'. q = (s 87) 9'

where I Is the distance measured along the dividing streamline.

For isoenergetic flow, the entrooy is related to the stagnation iressure by

p Pt2,
s 1 -In !_-)

(92)

1 t2)
Ptl

where, as before, second-order terms in the stagnation pressure loss are neg-

lected.

From the governing equation of the Clebsch variable 7, Eq. (65),

_ (1 -2 M2 (1 - q2g . t = q l -f M 2  I 2 q )1 ( 9 3 )
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.4 Substituting Eqs. (92) and (93) Into (91),

1l - ( 1 +[l M: (I q2)] (94)
q lyM 2 Ptl 2 1

Clearly, Eqs. (90) and (94) are identical. Hence, the Kutta c,ondition can be

satisfied by simply keeping the potential jump constant across the mesh line

leaving the airfoil trailing edge, as in the full-potential methods. A study

of the magnitude of Aq is presented in Fig. 5. Aq expressed in Eq. (94)

is plotted versus shock Mach number at freestream Mach number M - 0.7,

0.75, 0.8 and 0.85. The value of Aq increases as the shock Mach number

increases and the freestream Mach number decreases.

0.24

0w..6

000

0.2g..75

0 .16 /,,

.K ... ,/".J

.-., ..

0 0o M=0.70

: • M=0.85
:- -.. M,m.85

.." -0 I J| I

1 .4 1.5 1.6 1.7 1.8 1.9
-.- M

.shock

Figure 5. Velocity jump across the wake as described in Eq. (90)
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5.5 Numerical Results
The numerical solutions obtained by the present method for airfoils are pre-

sented in this section. Figure 6 shows the comparison between the solutions
obtained for the NACA-0012 airfoil at M - 0.800 and o . 1.250 from the two

Euler-Clebsch approaches and the time-marching Euler method (l]. The fully

conservative full-potential solution predicts a shock almost at the trailing

edge. The source term in Eq. (75) in the present method accounts for correc-

tions to the total density and the vorticity which are neglected in the full-

potential solutions. Solutions obtained by using the approximate and the

exact Euler-Clebsch approach predict weaker and more upstream shocks which

agree better with the time-marching Euler solution. A study of the order of

magnitude on Eqs. (74), (75) and (76) reveals that *he first-order correct-on

ccmes from the source term of EQ. (75) at shock points where entropy jump

occurs, and that the second-order correction comes from the vorticity effect

which modifies the velocity distribution, Eqs. (74) and (75), and source

-,'-. .-°- - . . -|

., o0.0

9 C

V - EULER (AGARD-AR-211)
- -. APPROXIMATE EULER CLEBSCH

iI EXACT EJLER CLEBSCH

...... FULLY CONSERVATIVE FULL POTENTIAL

1.0
0.0 0.5 x/C 1 .0

Figure 6. Comparison of solutions for NACA-0012 airfoil at M,. - 0.8 and
1.259.
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term of Eq. (76) at points downstream of shock points. In the exact Euler-

Clebsch approach, the rotational part is evaluated more accurately, and the

solution seems to agree better with the time-marching Euler solution than the

approximate Euler-Clebsch solution. Note that the shocks captured by the

Euler-Clebsch solutions are not as sharp as those obtained by the time-marching

Euler solution, especially on the lower surface. This is probably because the

time-marching Euler computation employs more points on the airfoil surfaces

than the Euler-Clebsch solutions (192 points vs 162 points).

Figure 7 presents the solutions obtained for the RAE-2822 airfoil at M

0.75 and a - 3. This test case was chosen in order to evaluate the accu-

racy of the Euler-Clebsch method In the presence of a strong shock. Figure 8

illustrates the stagnation pressure contour obtained using an in-house 'ersion

-1 .0

0.0

V S.

V UU

o - EULER (AGARD-AR-211)

,, ... APPROXIMATE EULER CLEBSCH

1.0 _. EXACT EULER CLEBSCH

0.0 0.5 X/1

Figure 7. Comparison of solutions for RAE-2822 airfoil at K. - 0.75 and
3• .
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I.~ F' __ _ __ _ _

TIME-MARCHING EULER METHOD EULER-CLEBSCH METHOD

Figure 8. Comparison of total pressure contours.I
0of the Jameson DFLO-53 time-marching Euler method (30,31] and the exact Euler-

Clebsch solution. This figure clearly shows that the convectie behavior of

the stagnation pressure along streamlines is preserved in the present Euler-

Clebsch method. The time-marching Euler method, however, has difficulty

modeling this inviscid characteristic because of the presence of numerical

dissipation terms.

The present exact Euler-Clebsch method, however, has difficulties In giving a

converged solution when the shock becomes too strong or the angle of attack

Secomes too large due to the stability criterion of Eq. (86). More stable

schemes such as the Crank-Nicholsen implicit scheme are currently under

Investigation.

S

p0 h
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6.0 NUMERICAL PROCEDURE AND RESULTS FOR THREE-DIMENSIONAL FLOWS

The numerical procedure to solve the governing equation with boundary condi-

tions for the three-dimensional flows is discussed in Section 6.1. The numer-

ical results obtained for wings and wing/bodies are presented .in the subsequent

sections. A comparison of finite-difference and finite-volume solutions is

presented in Section 6.2. Both full-potential and Euler-Clebsch solutions

obtained for wings are presented in Section 6.3, and the solutions obtained

for wing/bodies are presented in Section 6.4.

6.1 Governing Equations

In the three-dlmepsional case, the apprcach is similar to the two-dimensional

case, except for some additional assumptions and modifications. Only the

approximate Euler-Clebsch approach is applied here. First, the waKe or the

trailing vortex sheet defined by t in Eq. (67) is taken to be the grid surf-

ace emanating from the wing trailing edge. Furthermore, the trailing vorticity

is assumed to be convected along the grid lines leaving the trailing edge.

This is done by setting the jump in 0 across the wake at each spanwise sta-

tion to be constant along the mesh lines downstream of the trailing edge.

Hence, the trailing vorticity is the homogeneous solution defined in Eq. (66).

This treatment of the wake is the same as that applied in most potent'al

aporoaches.

Second, for swept wings, oblique shocks are usually found on most parts of the

wing surfaces. In some cases, it is possible to encounter oblique shocks where

jthe total Mach numbers both upstream and downstream of these shocks are super-

sonic. Although this type of oblique shock does appear in many transonic

applications, its shock strength is generally weak; therefore, no entropy cor-
wf

rection is given to this type of shock. In the absence of yaw, Eqs. (79)-(81)

still hold in 3-D where the local shock surface unit normal vector is defined

as n = (nxx  + (n Y)ey + (n z)eZ

The modified full-potential equation can now be derived from Eqs. (3) and (58)

as

c cl*XX * C20yy + C3 0ZZ * c40 y Y C50yz + C6 XZ + C 7 X  + C 8 * Y

' Oa29
+ c9tz  Da V (psVT)/p (95)
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with the velocity components, defined as

u -(h1$x + h4€Y + h 7 z) + S(hITx + h 4 Y + h 7Tz )]/

v a ((h 2$ * h51Y + h80z) + s(h2 Tx + h5Ty + h8Tz))/D (96)

w - ((h3$x h6 Y s h90Z) + s(h3 x + h6T + hgTz)]/O

In the approximate Euler-Clebsch approach, s is assumed to be constant along

Y - constant lines. Following the same argument as in the two-dimensional

case, the entropy s can be computed by the Rankine-Hugoniot relation, and the

gradient of T can be approximated by Eq. (80).

In the downstream farfield, the Neumann boundary condition is employea. The

implementation of this type of boundary condition requires the knowledge of

the far downstream velocity, which is not known a priori and is a function of

the shock strength. In the present study, the far downstream velocity, denoted

by d, is taken to be

5(cosa)e (sino)e - 2 n (97)) x Y yM (n cosm + n sIna)
x y

Conceptuai'y, the last term in Eq. (97) is related to the wave drag, and rep-

resents the ve'ocIty deficit due to the loss in the fluid stagnation pressure

across the shock.

6.2 Comparison of Finite-Difference and Finite-Volume Solutions

As described in Section 3.2. two major differences in the finite-difference

and the finIte-volume methods come from the formulation of the odd- and even-

point coupling terms, and the calculation of the density term. The coupling

term in the finite-difference method is derived directly from the coordinate

transformation, while the coupling term in tle flnite-volume method accounts

for the leading terms only. The explicit calculation of the density term in

the flnite-volume method makes the scheme conservative, but requires more

computational work because of the need to compute exponential quantities.

Figures 9 and 10 present the solutions obtained by the finite-difference and

finite-volume methods. The surface boundary :ondition in the finite-difference

method is enforced exactly as it is in the finite-volume method, while differ-

ent formulations are used in evaluating the residuals. Both solutions are
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obtained using the multigrid scheme. Figure 9 presents two solutions obtained

for a NASA swept wing [1] at M - 0.833 and a . 1.75 ° . The finite-difference

and finite-volume solutions agree well except for minor differences in the

after-shock flow reexpansion near the wing tip. Figure 10 presents a compari-

son of three computed solutions obtained by the present method and FLO-22 (32]

for an ONERA-M6 wing at M a 0.84 and a z 3.06*. The nonconservative scheme is

applied in the present method in order to make a fair comparison with the

FLO-22 solution which is also nonconservative. Both the present finite-volume

and flnite-difference solutions are obtained using 160 x 24 x 32 mesh points,

while the FLO-22 solution is obtained using 192 x 24 x 32 points. The FLO-22

method applies an extrapolated relaxation scheme to accelerate the solution

convergence, while the present method applies a multigrid scheme. In general,

the present solutions converge better than t-e FLO-22 solutions. The agreement

between the three solutions is generally good, except for a small discrepancy

In the prediction of shock locations.

Figure 11 shows a similar comparison of the solutions obtained for a Douglas

wind-tunnel model wing, LB-488. The LB-488 wing has a significant aft loading.

The present solutions predict an almost flat pressure plateau near the wing

root, while FLO-22 predicts a slight oscillation. Most interestingly, both the

present finite-volume and flnite-difference solutions predict a significant

preshock reexpansion between the 65 to 90% semispan locations, while the FLO-22

solution does not. This preshock reexpansion was first observed in the firite-

volume solution, and it was uncertain then whether this reexpansion was due to

numerical oscillation or possibly due to the special coupling terms Lescribed

In Section 3.2. The present finlte-difference solution obtained with more

exact coupling terms still shows the preshock reexpansion. Further investiga-

tion with the use of finer meshes should be carried out in order to understand

tne discrepancy between the present solutiong and the FLO-22 solution.

6.3 Euler-Clebsch Solutions

The Euler-Clebsch solutions are obtained using the analytical approach des-

cribed in Section 6.1. Figures 12 to 14 present the solutions obtained for

the NASA swept wing. A comparison of the pressure distributions computed at

several spanwise stations using Jameson's time-marching Euler method, the pres-

ent Euler-Clebsch method, and the nonconservative full-potential method is

shown in Fig. 12. This figure clearly demonstrates that the Euler-Clebsch
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solution is in good agreement with the time-marching Euler solution, except

near the wing-tip region. On the other hand, the nonconservative full-

potential method tends to predict earlier shock formation and weaker shock

strength compared to the time-marching Euler method. Moreover, the after-shock

reexpansion phenomenon appears in the nonconservative full-potential solution

when the shock becomes strong, for example, at the 40% and 60% span locations.

Near the wing-tip region, both the full-potential and the Euler-Clebsch methods

predict a higher suction peak than the time-marching Euler method. Moreover,

large after-shock reexpansions are found in the solutions of the two former

methods. Figure 13 gives comparisons of sectional CV Cd and C between the

results obtained using these three methods. Finally, Figure 14 shows the con-

vergence histories of average residuals and percent of supersonic points in the

computational domain as a function of work unit by the full-potential and

Euler-Clebsch methods. This figure clearly demonstrates that the Euler-Clebsch

method has the same convergence rate as the full-potential method with about

20% more computational time per work unit. Moreover, the computer storage

requirements in these two methods are approximately the same. On the other

hand, the time-marching Euler method is estimated to require nearly one order

of magnitude more computational time than the full-petential method.

't zero angle of attack, the ONERA-M6 wing is nonlifting and hence does not

n've a trailing vcrtex sheet. Inaccuracies associated with the approximate

modeling of the trailing vortex sheet can therefore be isolated in this test

case. Figure "5 illustrates a comparison of the pressure distributions

obtainec at three spanwise locations using the Euler-Clebsch method, the non-

conservative full-potential method, and the Onera/Matra time-marching Euler

method. The Onera/Matra solution presented in the AGARD report £1] was chosen

for comparison since It lies between the other AGARD solutions and has tabu-

lateC pressure data. In general the Euler-Clebsch method predicts shock loca-

tion and shock strength better than the full-potential method. The shock

locations predicted by the Euler-Clebsch method are consistently slightly down-

stream of those predicted by the time-marching Euler solution, except near the

wing-tip region. For example, at the 80% span station, the Euler-Clebsch solu-

tion predicts the shock location slightly upstream of that predicted by the

time-marching Euler solution. In addition, the study also indicates that the

Euler-Clebsch method predicts a suction level in front of the shock slightly
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- approximate Euler-Clebsch
- full-potential (non-conservative)

o

FMedium Fine
° mesh mesh w

0. V

CD

O.0 100.0 'o0. " c .0

Work unit

Figure 14. Comparison of convergence history for the solutions obtained for
NASA swept wing at M. z 0.833 and a = 1.75 ° .

higher than that predicted by the tlme-marching Euler solution, hence the shock

is stronger.

All of these discrepancies are very similar to those found in the NASA swept

wing case, even though the trailing vortex sheet Is absent in this example.

Hence, it is believed that the disagreements around the wing-tlp region in the

results of these methods may be associated with the different ways in which the

wing-tip boundary conditions are handled. However, due to the limited data

available in the literature and the premature status of the time-marching Euler
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code at the present time, no definite conclusions can be drawn from these

results as to the accuracy of the present method near the wing tip region.

6.4 Wing/Body Solutions

An example of a wing/body flowfield calculation is demonstrated for an F-14

model (33]. The input geometry is shown in Fig. 16. Near the'wing root, there

is a leading-edge break, where the leading-edge sweep angle changed from 68° to

220. The inlet entrance is modeled by a flat surface where the no-flux condi-

tion is applied. The grid generation method of Chen, Vassberg and Peavey [281

is applied to generate a C-H-H grid, as shown In Figs. 17 and 18. Figure 17

shows a grid distribution on the wing and fuselage surfaces, while Fig. 18

shows a typical fuselage cross-sectional grid distribution at nearly midwing.

The solutions obtained for wing-alone and wing/body cases are presented In

FIgs. 19 and 20 for M = 0.800 and , = 40, and M 0.900 and a . 20, respec-~m
tively, using the nonconservative scheme. The results show that the fuselage

introduces a significant upwash effect on the pressure distribution on the wing

surface. This effect is more pronounced near the wing root than near the wing

tip. The slight oscillation in the wing/body solutions near the leading edqe

I,

Figure 16. An input geometry for F-14 wing/body.
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I

i

Figure 17. Sirface grid distribution on the F_1l4 wing/body

j I Is probably due to the mesh distortion caused by an unsmooth varlation of the

fuselage cross-sectIonal area.

Comparisons of solutions obtained for the F-14 wing/body using the fully con-

.%

servative full-potential method and the present Euler-Clebsch method are pre-

IW

sented In Figs. 21 and 22 for M 0.85 and a 40, and N 0.9 and a . 0
WU

respectively. Figure 21 shows that the fully-conservative full-potential solu-

tIon predicts stronger and more downstream shocks than the Euler-Clebsch solu-

tion. An exceptionally high suction peak appears near 35% semispan location

in the Euler-Clebsch solution; this may be due to the slope discontinuity at

the leading-edge break. Figure 22 presents the solution at a higher Mach num-

ber, M. 0.900 and a lower angle of attack, a 20. The Euler-Clebsch method

predicts a shock very close to the trailing edge, while the fully-conservative

full-potential method fails to give a converged solution. Figure 23 presents

three solutions obtained for the F-14 wing/body using the Euler-Clebsch method

at Mach numbers M. 0,85, 0.90 and 0.95, respectively, and at angle of attack

0043h 39
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Figure 18. A cross-sectional grid distribution fo- t9e F-14 wing"body

S20. Strong shocks are predicted on the upper surface at all freestream

Mach numbers, and a second shock is developed on the lower surface for the M =

0.95 case. Because of the appearance of the lower-surface shock and a signif-

icantly reduced pressure plateau on the upper surface, the total lift drops as

the freestream Mach number Increases from 0.900 to 0.950. The Kutta condition

for the solution of M a 0.95 near the wingetip is not satisfied exactly due to

the limitation of the approximate Euler-Clebsch assumptions. As explained in

Section 5.4, the Kutta condition ii satisfied under the assumption that the

velocity jump across the wake, 8q, is much smaller than the freestream vel-

ocity. As the shock becomes stronger, the above assumption is no longer valid;

therefore the pressures at the upper and lower trailing edges become further

apart, as shown in the solutions of M - 0.95. Whether the Kutta conditlcn
m
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can be better satisfied by using the exact Euler-Clebsch method in the three-

dimensional case should be further Investigated.

The F-14 wing/body solutions presented In Figs. 19 through 23 are obtained for

a wing with a leading-edge break, located at about 34% semispan location, where

the leading-edge sweep angle changes from b7° to 220. The t6tal lift coef-

ficients computed for this configuration at M - 0.8 and a - -4.3*, -2.65*,

-10. 00, 10, 20, 3.05 ° and 4.05 ° are presented in Table 1 and Fig. 24 and com-

pared with the test data of BavItz [34]. In the calculations, the fuselage is

extended to downstream Infinity with constant cross-section, as shown in Fig.

17, the tail section Is not modeled, and the surface pressure integration for

the total lift is performed on the entire wing and part of the fuse~age from

the nose to abeut one root chord length downstream of the wing trailing edge.

The reference wing area is chosen to be the extended wing planform area which

Is conputed by linearly extending the 220 leading-edge line and the trailing-

edge line from the leading-edge break to the vertical symmetry plane. The

computed total lift coefficients agree fairly well with the test data, as

shown In Fig. 24, despite the tail section and the viscous effect not being

Included in the calculation.

ab'e 1. Comparison of experimental and computed total lift
coefficients for the F-14 wing/body configuration
at M. 0.800

CL)e CL)

Data Points a L exp L calc

i -4.30 -0.410 -0.3685

2 -2.65 °  -0.185 -0.1755

3 -10 0.020 0.0206

4 0°  0.150 0.1412

5 10 0.280 0.2631

6 20 0.410 0.3863

7 3.050 0.515 0.5183

8 4.050 0.625 0.6390
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7.0 CONCLUDING REMARKS

The full-potential and time-marching Euler methods are two of the most promis-

Ing transonic computational methods at the present time. Each method has its

own advantages over the other and, therefore, has its own speclal applications.

The work reported has demonstrated that the full-potential method for transonic

flowfield calculations can be further improved by including the rotational

effect, introduced due to entropy jump across the shocks, as in the present

two- and three-dimensional Euler correction methods based on the Clebsch trans-

formation. The approximate Euler-Clebsch method has been developed for both

two- and three-dimensional flows, while the exact Euler-Clebsch method Is

implemented only for the twn-dimenslonal case. The results for transonic air-

foil flows show that the approxirmate and the exact Euler-Clebsch solutions

generally agree well. The total pressure loss across the shocks Is included

in the present method in conjunction with the use of the Rankine-Hugoniot

relation, while this is neglected In the conventional full-potential methods.

The convection of the vorticity Is computed along streamlines in the exact

Euler-Clebsch method and along the mesh lines in the approximate Euler-Clebsch

method, while the vorticity is dissipated in the time-marching Euler method

because of the need to add artificial dissipatlon terms. The 'mplementation

of the present method is straightforward. The present scheme based on the
.- Clebsch transformation can be applied in most of the existing full-potential

methods, not only for calculat'ng more accurate shocs, but also for modeling

two- and three-dimensional rotational flows such as flows downstream of actu-

ator disks [35,36].

A study of finite-volume and finite-difference formulations of the full-

* potential equation Is presented. The solutions obtained by using both formu-

C". latlons agree well; the finite volume method calculates the density term

implicitly while the flnite-difference method does not. The present method

compute! transonic flows more accurately than the full-potentlal methods and

. gives solutions agreeing better with the time-marching Euler solutions. How-

ever, for flows with very strong shocks, the present approximate Euler-Clebsch

-v method does not exactly satisfy the Kutta condition. Further work to improve

the two-dimensional exact Euler-Clebsch method and to extend it to three

dimensions Is recommended.
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